
Algorithm for file updates in Python

Project description

At my organization, access to restricted content is controlled with an allow
list of IP addresses. The "allow_list.txt" file identifies these IP
addresses. A separate remove list identifies IP addresses that should no
longer have access to this content. I created an algorithm to automate
updating the "allow_list.txt" file and remove these IP addresses that should
no longer have access.

Open the file that contains that allow list

I need to tell the program the name of the file I want to work
with. In this case, it's “allow_list.txt”. I store this name in a
variable called import_file , Then I use a with statement, which
is a special way to open files that makes sure they close properly
when I’m done with them.

The open() function here is used with two pieces of information
the name of the file and the ”r” which stands for “read”. This
means it’s just going to look at the file, not change it. The as
keyword is followed by file which is going to setting up file as
a temporary name for “allow_list.txt” while it's open.

Read the file contents

To properly handle the file content, the program begins with
opening the file in 'read' mode. This mode is signaled by the "r"
argument, which tells Python that to only look at the file, not
change it.

I applied the .read() method to the file variable, it means I took
the action of reading and pointed it at the open file, Then, after
capturing all that information in the form of text, I gave it a
name, ip_addresses.

Convert the string into a list

After reading the file, we have all the IP addresses in one big
string. To make it easier to work with each IP address, I needed
to split this big string into a list. Each item in the list would
be one IP address.

Using .split() on string of IP addresses chops it up at every space
and gives back a bunch of smaller strings. Each of these smaller
strings is an IP address, and they're all stored in a list called
ip_addresses.

Iterate through the remove list

We have a second list, named remove_list, which has all the IP
addresses we no longer want to allow. To check these against our
ip_addresses list, we need to go through remove_list one by one
and see if any are in ip_adresses.

The word for tells Python to start looping. Element is the variable
that will hold each IP address from the remove_list as it go
through it.

Remove IP addresses that are on the remove list

To clean up from "allow_list.txt" by taking out any IP addresses
that should no longer be allowed access. These unwanted IP
addresses are listed in a separate collection known as remove_list.

The for loop goes over each entry in remove_list and The if
statement checks if the current IP (element) is in the ip_address
list and If it is, .remove(element) gets rid of it. Each ip that
matches gets removed, ensuring that only the IPs we want to keep
are left in ip_addresses.

Update the file with the revised list of IP addresses

The final task of my algorithm was to save the updated list of IP
addresses back into the "allow_list.txt" file. Before doing that,
I needed to turn the list of individual IP addresses back into a
single block of text, or a string. The .join() method helped us
for this because it takes a list and sticks all the items together
with a specified character in between each item. I chose to use a
newline character ("\n")which helps us each ip address would end
up on its own line in the text file.

Next, I needed to open "allow_list.txt" again, but this time for
writing, which is what "w" stands for in the open()function. This
lets me replace the old content with the new, updated list.

By using "w" I told the program that I want to overwrite everything
in there with my new list. The .write() function will take that
string I just made and printing it onto the file, replacing
whatever was there before. So after this, the file only has the IP
addresses we want to keep and none of the ones we removed.

Summary

So what I did was I made a Python algorithm effectively maintains
the integrity of the "allow_list.txt" file by removing
unauthorized IP addresses that can take a list of Ip addresses we
no longer want to have access and remove them from our
"allow_list.txt." This process opens the file, reads the
addresses, checks them against the blocked list, takes out the
ones we don't want, and then saves the updated list back to the
file.

